Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mSphere ; 9(4): e0008724, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38509042

RESUMEN

The gut microbiome is a symbiotic microbial community associated with the host and plays multiple important roles in host physiology, nutrition, and health. A number of factors have been shown to influence the gut microbiome, among which diet is considered to be one of the most important; however, the relationship between diet composition and gut microbiota in wild mammals is still not well recognized. Herein, we characterized the gut microbiota of bats and examined the effects of diet, host taxa, body size, gender, elevation, and latitude on the gut microbiota. The cytochrome C oxidase subunit I (COI) gene and 16S rRNA gene amplicons were sequenced from the feces of eight insectivorous bat species in southern China, including Miniopterus fuliginosus, Aselliscus stoliczkanus, Myotis laniger, Rhinolophus episcopus, Rhinolophus osgoodi, Rhinolophus ferrumequinum, Rhinolophus affinis, and Rhinolophus pusillus. The results showed that the composition of gut microbiome and diet exhibited significant differences among bat species. Diet composition and gut microbiota were significantly correlated at the order, family, genus, and operational taxonomic unit levels, while certain insects had a marked effect on the gut microbiome at specific taxonomic levels. In addition, elevation, latitude, body weight of bats, and host species had significant effects on the gut microbiome, but phylosymbiosis between host phylogeny and gut microbiome was lacking. These findings clarify the relationship between gut microbiome and diet and contribute to improving our understanding of host ecology and the evolution of the gut microbiome in wild mammals. IMPORTANCE: The gut microbiome is critical for the adaptation of wildlife to the dynamic environment. Bats are the second-largest group of mammals with short intestinal tract, yet their gut microbiome is still poorly studied. Herein, we explored the relationships between gut microbiome and food composition, host taxa, body size, gender, elevation, and latitude. We found a significant association between diet composition and gut microbiome in insectivorous bats, with certain insect species having major impacts on gut microbiome. Factors like species taxa, body weight, elevation, and latitude also affected the gut microbiome, but we failed to detect phylosymbiosis between the host phylogeny and the gut microbiome. Overall, our study presents novel insights into how multiple factors shape the bat's gut microbiome together and provides a study case on host-microbe interactions in wildlife.


Asunto(s)
Quirópteros , Dieta , Heces , Microbioma Gastrointestinal , Filogenia , ARN Ribosómico 16S , Animales , Quirópteros/microbiología , ARN Ribosómico 16S/genética , Heces/microbiología , Masculino , Femenino , China , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/genética , Geografía , Insectos/microbiología , Complejo IV de Transporte de Electrones/genética
2.
Anim Cogn ; 27(1): 8, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38429588

RESUMEN

Predation risk may affect the foraging behavior of birds. However, there has been little research on the ability of domestic birds to perceive predation risk and thus adjust their feeding behavior. In this study, we tested whether domestic budgerigars (Melopsittacus undulatus) perceived predation risk after the presentation of specimens and sounds of sparrowhawks (Accipiter nisus), domestic cats (Felis catus), and humans, and whether this in turn influenced their feeding behavior. When exposed to visual or acoustic stimuli, budgerigars showed significantly longer latency to feed under sparrowhawk, domestic cat, and human treatments than with controls. Budgerigars responded more strongly to acoustic stimuli than visual stimuli, and they showed the longest latency to feed and the least number of feeding times in response to sparrowhawk calls. Moreover, budgerigars showed shorter latency to feed and greater numbers of feeding times in response to human voices than to sparrowhawk or domestic cat calls. Our results suggest that domestic budgerigars may identify predation risk through visual or acoustic signals and adjust their feeding behavior accordingly.


Asunto(s)
Percepción Auditiva , Melopsittacus , Humanos , Animales , Gatos , Percepción Auditiva/fisiología , Melopsittacus/fisiología , Conducta Predatoria , Acústica , Sonido
3.
Mol Ecol ; 32(16): 4695-4707, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37322601

RESUMEN

Skin microbiota play an important role in protecting bat hosts from the fungal pathogen Pseudogymnoascus destructans, which has caused dramatic bat population declines and extinctions. Recent studies have provided insights into the bacterial communities of bat skin, but variation in skin bacterial community structure in the context of the seasonal dynamics of fungal invasion, as well as the processes that drive such variation, remain largely unexplored. In this study, we characterized bat skin microbiota over the course of the bat hibernation and active season stages and used a neutral model of community ecology to determine the relative roles of neutral and selective processes in driving microbial community variation. Our results showed significant seasonal shifts in skin community structure, as well as less diverse microbiota in hibernation than in the active season. Skin microbiota were influenced by the environmental bacterial reservoir. During both the hibernation and active season stages, more than 78% of ASVs in bat skin microbiota were consistent with neutral distribution, implying that neutral processes, that is, dispersal or ecological drift contributing the most to shifts in skin microbiota. In addition, the neutral model showed that some ASVs were actively selected by the bats from the environmental bacterial reservoir, accounting for approximately 20% and 31% of the total community during hibernation and active season stages, respectively. Overall, this research provides insights into the assemblage of bat-associated bacterial communities and will aid in the development of conservation strategies against fungal disease.


Asunto(s)
Quirópteros , Hibernación , Microbiota , Micosis , Animales , Quirópteros/microbiología , Estaciones del Año , Micosis/microbiología , Piel/microbiología , Bacterias/genética , Microbiota/genética
4.
Curr Zool ; 69(1): 59-65, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36974144

RESUMEN

Behavioral divergence among populations is common across taxonomic groups, still we know very little about anti-predator behaviors. Animal exposure to predation risk is variable in different ecological contexts. In addition, reproduction value of animals in different geographical regions usually varies. In this study, we tested whether cinereous tits Parus cinereus in different populations exhibited nest defense behaviors similar to those of nest or adult predators and whether their nest defense behaviors showed geographical variation. By using field dummy experiments, we observed tits' nest defense behavior in nest predator common chipmunk Tamias sibiricus and red squirrel Sciurus vulgaris, adult predator Eurasian sparrowhawk Accipiter nisus and nonthreatening species Oriental turtle dove Streptopelia orientalis in the ZJ (44° N), DZ (31° N), and DLS (18° N) populations, respectively. The response scores varied significantly across the 4 dummies in ZJ-tits and DLS-tits but did not in DZ-tits. When facing the chipmunk, ZJ-tits showed the highest response score and DZ-tits showed the lowest response score. When facing the squirrel, ZJ-tits showed a higher response score than tits in the other 2 populations. However, tits among the 3 populations responded similarly to a sparrowhawk or dove with slight response behaviors. In addition, response scores to nest predators were positively correlated with brood size across the 3 populations, but no trend was found for sparrowhawks or doves. Our results indicated that the nest defense behaviors of cinereous tits have evolved in response to large-scale geographical variation in ecological contexts and reproduction value.

5.
Virulence ; 14(1): 2156185, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36599840

RESUMEN

Skin acts as a mechanical barrier between the body and its surrounding environment and plays an important role in resistance to pathogens. However, we still know little regarding skin responses to physiological changes, particularly with regard to responses against potential pathogens. We herein executed RNA-seq on the wing of the Rhinolophus ferrumequinum to assess gene-expression variations at four physiological stages: pre-hibernation, hibernation (early-hibernation and late-hibernation), and post-hibernation, as well as the gene-expression patterns of infected and uninfected bats with the Pseudogymnoascus destructans (Pd). Our results showed that a greater number of differentially expressed genes between the more disparate physiological stages. Functional enrichment analysis showed that the down-regulated response pathways in hibernating bats included phosphorus metabolism and immune response, indicating metabolic suppression and decreased whole immune function. We also found up-regulated genes in post-hibernating bats that included C-type lectin receptor signalling, Toll-like receptor signalling pathway, and cell adhesion, suggesting that the immune response and skin integrity of the wing were improved after bats emerged from their hibernation and that this facilitated clearing Pd from the integument. Additionally, we found that the genes involved in cytokine or chemokine activity were up-regulated in late-hibernation compared to early-hibernation and that FOSB regulation of immune cell activation was differentially expressed in bats infected with Pd during late-hibernation, implying that the host's innate immune function was enhanced during late-hibernation so as to resist pathogenic infection. Our findings highlight the concept that maintenance of intrinsic immunity provides protection against pathogenic infections in highly resistant bats.


Asunto(s)
Quirópteros , Hibernación , Animales , Transcriptoma , Quirópteros/genética , Hibernación/genética , Piel
6.
Animals (Basel) ; 12(24)2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36552410

RESUMEN

The echolocation calls of bats are mainly used for navigation and foraging; however, they may also contain social information about the emitter and facilitate social interactions. In this study, we recorded the echolocation calls of greater horseshoe bats (Rhinolophus ferrumequinum) and analyzed the acoustic parameter differences between the sexes and among individuals. Then, we performed habituation-discrimination playback experiments to test whether greater horseshoe bats could recognize the sex and individual identity of conspecifics from their echolocation calls. The results showed that there were significant differences in the echolocation call parameters between sexes and among individuals. When we switched playback files from a habituated stimuli to a dishabituated stimuli, the tested bats exhibited obvious behavioral responses, including nodding, ear or body movement, and echolocation emission. The results showed that R. ferrumequinum can recognize the sex and individual identity of conspecifics from their echolocation calls alone, which indicates that the echolocation calls of R. ferrumequinum may have potential communication functions. The results of this study improve our understanding of the communication function of the echolocation calls of bats.

7.
Ecol Evol ; 12(11): e9554, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36440317

RESUMEN

In many vertebrates, vocal communication is crucial in parent-offspring interactions, and parents are often able to discriminate between the calls of their own and others' offspring. There are many reports on the unidirectional recognition of isolation calls of pups by maternal bats, but few studies on the ability of bat pups to recognize maternal acoustic signals. In this study, we investigated whether the echolocation pulses of female Asian particolored bats (Vespertilio sinensis) and isolation calls of pups differ statistically among individuals. We used two-choice playback experiments to test whether the mothers and pups of V. sinensis can recognize each other by acoustic signals. Both the echolocation pulses of mother bats and the isolation calls of pups contained sufficient individual characteristics. Playback experiments showed that mothers were able to recognize isolation calls of pups, and most pups greater than 12 days old were able to distinguish echolocation pulses of their own mother from those of other mothers. This is the first use of two-choice acoustic signal playback experiments to confirm that pups can recognize their mothers by echolocation calls. The results provide behavioral evidence for bidirectional recognition of acoustic signals between mothers and infants in frequency-modulated type bats.

8.
Animals (Basel) ; 12(18)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36139202

RESUMEN

Geographic variability in acoustic signals has been documented in many bird species. However, geographic variations in alarm calls have been so far neglected despite their crucial role on reducing risk to group members and relatives. We analyzed the note types and acoustic parameters of Japanese tit (Parus minor) alarm calls to three types of intruders (a nest predator, an adult predator, and a harmless species) from three populations in China. Our results revealed that tits in the same population produce similar note types to different intruders, but the three populations only shared six note types and each population had unique note types. The frequency and duration parameters of three shared common note types were significantly different among populations. The three populations belong to the same species, thus they have shared note types. We suspect that the unique note types occurring in each population may be related to three potential reasons: founder effect, predation pressure, and vocal learning. The differences in acoustic parameters of common notes among populations may be a consequence of adaptations to their environments. We suggest that population differences in the note levels of bird alarm calls do exist.

9.
Front Microbiol ; 13: 808788, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35432245

RESUMEN

Host-associated skin bacteria are essential for resisting pathogen infections and maintaining health. However, we have little understanding of how chiropteran skin microbiota are distributed among bat species and their habitats, or of their putative roles in defending against Pseudogymnoascus destructans in China. In this study, we characterized the skin microbiomes of four bat species at five localities using 16S rRNA gene amplicon sequencing to understand their skin microbial composition, structure, and putative relationship with disease. The alpha- and beta-diversities of skin microbiota differed significantly among the bat species, and the differences were affected by environmental temperature, sampling sites, and host body condition. The chiropteran skin microbial communities were enriched in bacterial taxa that had low relative abundances in the environment. Most of the potential functions of skin microbiota in bat species were associated with metabolism. Focusing on their functions of defense against pathogens, we found that skin microbiota could metabolize a variety of active substances that could be potentially used to fight P. destructans. The skin microbial communities of bats in China are related to the environment and the bat host, and may be involved in the host's defense against pathogens.

10.
Environ Microbiol ; 24(3): 1484-1498, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34472188

RESUMEN

The bats skin microbiota plays an important role in reducing pathogen infection, including the deadly fungal pathogen Pseudogymnoascus destructans, the causative agent of white-nose syndrome. However, the dynamic of skin bacterial communities response to environmental perturbations remains poorly described. We characterized skin bacterial community over time and space in Rhinolophus ferrumequinum, a species with high resistance to the infection with P. destructans. We collected environmental covariate data to determine what factors influenced changes in community structure. We observed significant temporal and spatial shifts in the skin bacterial community, which was mainly associated with variation in operational taxonomic units. The skin bacterial community differed by the environmental microbial reservoirs and was most influenced by host body condition, bat roosting temperature and geographic distance between sites, but was not influenced by pathogen infection. Furthermore, the skin microbiota was enriched in particular taxa with antifungal abilities, such as Enterococcus, Burkholderia, Flavobacterium, Pseudomonas, Corynebacterium and Rhodococcus. And specific strains of Pseudomonas, Corynebacterium and Rhodococcus even inhibited P. destructans growth. Our findings provide new insights in characterizing the variation in bacterial communities can inform us about the processes of driving community assembly and predict the host's ability to resist or survive pathogen infection.


Asunto(s)
Quirópteros , Microbiota , Animales , Antifúngicos , Bacterias/genética , Quirópteros/microbiología , Microbiota/fisiología , Nariz/microbiología , Pseudomonas
11.
Microb Biotechnol ; 15(2): 469-481, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33559264

RESUMEN

White-nose syndrome, a disease that is caused by the psychrophilic fungus Pseudogymnoascus destructans, has threatened several North America bat species with extinction. Recent studies have shown that East Asian bats are infected with P. destructans but show greatly reduced infections. While several factors have been found to contribute to these reduced infections, the role of specific microbes in limiting P. destructans growth remains unexplored. We isolated three bacterial strains with the ability to inhibit P. destructans, namely, Pseudomonas yamanorum GZD14026, Pseudomonas brenneri XRD11711 and Pseudomonas fragi GZD14479, from bats in China. Pseudomonas yamanorum, with the highest inhibition score, was selected to extract antifungal active substance. Combining mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy analyses, we identified the active compound inhibiting P. destructans as phenazine-1-carboxylic acid (PCA), and the minimal inhibitory concentration (MIC) was 50.12 µg ml-1 . Whole genome sequencing also revealed the existence of PCA biosynthesis gene clusters. Gas chromatography-mass spectrometry (GC-MS) analysis identified volatile organic compounds. The results indicated that 10 ppm octanoic acid, 100 ppm 3-tert-butyl-4-hydroxyanisole (isoprenol) and 100 ppm 3-methyl-3-buten-1-ol (BHA) inhibited the growth of P. destructans. These results support that bacteria may play a role in limiting the growth of P. destructans on bats.


Asunto(s)
Ascomicetos , Quirópteros , Animales , Ascomicetos/genética , Bacterias , Quirópteros/microbiología , Quirópteros/fisiología , Pseudomonas
12.
BMC Ecol Evol ; 21(1): 199, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34732135

RESUMEN

BACKGROUND: In genus Rhinolophus, species in the Rhinolophus philippinensis and R. macrotis groups are unique because the horseshoe bats in these group have relatively low echolocation frequencies and flight speeds compared with other horseshoe bats with similar body size. The different characteristics among bat species suggest particular evolutionary processes may have occurred in this genus. To study the adaptive evidence in the mitochondrial genomes (mitogenomes) of rhinolophids, especially the mitogenomes of the species with low echolocation frequencies, we sequenced eight mitogenomes and used them for comparative studies of molecular phylogeny and adaptive evolution. RESULTS: Phylogenetic analysis using whole mitogenome sequences produced robust results and provided phylogenetic signals that were better than those obtained using single genes. The results supported the recent establishment of the separate macrotis group. The signals of adaptive evolution discovered in the Rhinolophus species were tested for some of the codons in two genes (ND2 and ND6) that encode NADH dehydrogenases in oxidative phosphorylation system complex I. These genes have a background of widespread purifying selection. Signals of relaxed purifying selection and positive selection were found in ND2 and ND6, respectively, based on codon models and physicochemical profiles of amino acid replacements. However, no pronounced overlap was found for non-synonymous sites in the mitogenomes of all the species with low echolocation frequencies. A signal of positive selection for ND5 was found in the branch-site model when R. philippinensis was set as the foreground branch. CONCLUSIONS: The mitogenomes provided robust phylogenetic signals that were much more informative than the signals obtained using single mitochondrial genes. Two mitochondrial genes that encoding proteins in the oxidative phosphorylation system showed some evidence of adaptive evolution in genus Rhinolophus and the positive selection signals were tested for ND5 in R. philippinensis. These results indicate that mitochondrial protein-coding genes were targets of adaptive evolution during the evolution of Rhinolophus species, which might have contributed to a diverse range of acoustic adaptations in this genus.


Asunto(s)
Quirópteros , Ecolocación , Genoma Mitocondrial , Selección Genética , Animales , Quirópteros/genética , Evolución Molecular , Genes Mitocondriales , Filogenia
13.
Animals (Basel) ; 11(3)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800251

RESUMEN

Determining the evolutionary history and population drivers, such as past large-scale climatic oscillations, stochastic processes and ecological adaptations, represents one of the aims of evolutionary biology. Hipposideros larvatus is a common bat species in Southern China, including Hainan Island. We examined genetic variation in H. larvatus using mitochondrial DNA and nuclear microsatellites. We found a population structure on both markers with a geographic pattern that corresponds well with the structure on mainland China and Hainan Island. To understand the contributions of geography, the environment and colonization history to the observed population structure, we tested isolation by distance (IBD), isolation by adaptation (IBA) and isolation by colonization (IBC) using serial Mantel tests and RDA analysis. The results showed significant impacts of IBD, IBA and IBC on neutral genetic variation, suggesting that genetic variation in H. larvatus is greatly affected by neutral processes, environmental adaptation and colonization history. This study enriches our understanding of the complex evolutionary forces that shape the distribution of genetic variation in bats.

14.
Genome Biol Evol ; 12(1): 3740-3753, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31730196

RESUMEN

High-frequency hearing is important for the survival of both echolocating bats and whales, but our understanding of its genetic basis is scattered and segmented. In this study, we combined RNA-Seq and comparative genomic analyses to obtain insights into the comprehensive gene expression profile of the cochlea and the adaptive evolution of hearing-related genes. A total of 144 genes were found to have been under positive selection in various species of echolocating bats and toothed whales, 34 of which were identified to be related to hearing behavior or auditory processes. Subsequently, multiple physiological processes associated with those genes were found to have adaptively evolved in echolocating bats and toothed whales, including cochlear bony development, antioxidant activity, ion balance, and homeostatic processes, along with signal transduction. In addition, abundant convergent/parallel genes and sites were detected between different pairs of echolocator species; however, no specific hearing-related physiological pathways were enriched by them and almost all of the convergent/parallel signals were selectively neutral, as previously reported. Notably, two adaptive parallel evolved sites in TECPR2 were shown to have been under positive selection, indicating their functional importance for the evolution of echolocation and high-frequency hearing in laryngeal echolocating bats. This study deepens our understanding of the genetic bases underlying high-frequency hearing in the cochlea of echolocating bats and toothed whales.


Asunto(s)
Quirópteros/genética , Cóclea/metabolismo , Ecolocación , Evolución Molecular , Ballenas/genética , Animales , Quirópteros/metabolismo , Femenino , Genómica , Audición/genética , Dominios Proteicos/genética , RNA-Seq , Selección Genética , Ballenas/metabolismo
15.
Front Zool ; 16: 37, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31528181

RESUMEN

BACKGROUND: Although the sensory drive hypothesis can explain the geographic variation in echolocation frequencies of some bat species, the molecular mechanisms underlying this phenomenon are still unclear. The three lineages of greater horseshoe bat (Rhinolophus ferrumequinum) in China (northeast, central-east, and southwest) have significant geographic variation in resting frequencies (RF) of echolocation calls. Because their cochleae have an acoustic fovea that is highly sensitive to a narrow range of frequencies, we reported the transcriptomes of cochleae collected from three genetic lineages of R. ferrumequinum, which is an ideal organism for studying geographic variation in echolocation signals, and tried to understand the mechanisms behind this bat phenomenon by analyzing gene expression and sequence variation. RESULTS: A total of 8190 differentially expressed genes (DEGs) were identified. We identified five modules from all DEGs that were significantly related to RF or forearm length (FL). DEGs in the RF-related modules were significantly enriched in the gene categories involved in neural activity, learning, and response to sound. DEGs in the FL-related modules were significantly enriched in the pathways related to muscle and actin functions. Using 21,945 single nucleotide polymorphisms, we identified 18 candidate unigenes associated with hearing, five of which were differentially expressed among the three populations. Additionally, the gene ERBB4, which regulates diverse cellular processes in the inner ear such as cell proliferation and differentiation, was in the largest module. We also found 49 unigenes that were under positive selection from 4105 one-to-one orthologous gene pairs between the three R. ferrumequinum lineages and three other Chiroptera species. CONCLUSIONS: The variability of gene expression and sequence divergence at the molecular level might provide evidence that can help elucidate the genetic basis of geographic variation in echolocation signals of greater horseshoe bats.

16.
Mol Phylogenet Evol ; 139: 106544, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31252069

RESUMEN

Species delimitation and evolutionary reconstruction remain challenging for non-model species that have experienced reticulate evolution and exhibit conflicting patterns of differentiation among multiple lines of evidence, such as mitochondrial and nuclear data and phenotypes. Here, we applied an integrative taxonomic approach to a case study of Rhinolophus macrotis complex, whose taxonomic status remains controversial, to provide insight into the systematics and evolutionary history of these species. By integrating traditional genetic markers with different modes of inheritance, genome-wide SNPs as well as phenotypic characteristics, we clarified the presence of three closely related species, R. episcopus, R. siamensis, and R. osgoodi, within this complex, and proposed a new taxonomic treatment for R. osgoodi. Our results suggested that hybridization and introgression are the main causes of low mtDNA divergence in these species. Combined with the demographic inference, we deduced that glacial-interglacial cycles drove geographic isolation and secondary contacts of these species, then promoted hybridization and lineage fusion among them, finally resulting in a reticulate evolutionary pattern. Overall, our study highlights the importance of combining multiple types of data to delimit species, especially those with conserved morphology, and to reveal the sophisticated processes of speciation.


Asunto(s)
Quirópteros/clasificación , Animales , Quirópteros/genética , ADN Mitocondrial/química , Marcadores Genéticos , Especiación Genética , Hibridación Genética , Fenotipo , Filogenia , Polimorfismo de Nucleótido Simple
17.
Sci Rep ; 6: 35417, 2016 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-27748429

RESUMEN

Palaeoclimatic oscillations and different landscapes frequently result in complex population-level structure or the evolution of cryptic species. Elucidating the potential mechanisms is vital to understanding speciation events. However, such complex evolutionary patterns have rarely been reported in bats. In China, the Rhinolophus macrotis complex contains a large form and a small form, suggesting the existence of a cryptic bat species. Our field surveys found these two sibling species have a continuous and widespread distribution with partial sympatry. However, their evolutionary history has received little attention. Here, we used extensive sampling, morphological and acoustic data, as well as different genetic markers to investigate their evolutionary history. Genetic analyses revealed discordance between the mitochondrial and nuclear data. Mitochondrial data identified three reciprocally monophyletic lineages: one representing all small forms from Southwest China, and the other two containing all large forms from Central and Southeast China, respectively. The large form showed paraphyly with respect to the small form. However, clustering analyses of microsatellite and Chd1 gene sequences support two divergent clusters separating the large form and the small form. Moreover, morphological and acoustic analyses were consistent with nuclear data. This unusual pattern in the R. macrotis complex might be accounted for by palaeoclimatic oscillations, shared ancestral polymorphism and/or interspecific hybridization.


Asunto(s)
Quirópteros/genética , Evolución Molecular , Estudios de Asociación Genética , Genética de Población , Animales , Quirópteros/anatomía & histología , Quirópteros/fisiología , ADN Mitocondrial , Genes Mitocondriales , Variación Genética , Genotipo , Repeticiones de Microsatélite/genética , Fenotipo
18.
Ecol Evol ; 5(6): 1214-23, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25859327

RESUMEN

Because of its complicated systematics, the bent-winged bat is one of the most frequently studied bat species groups. In China, two morphologically similar bent-winged bat species, Miniopterus fuliginosus and Miniopterus magnater were identified, but their distribution range and genetic differentiation are largely unexplored. In this study, we applied DNA bar codes and two other mitochondrial DNA genes including morphological parameters to determine the phylogeny, genetic differentiation, spatial distribution, and morphological difference of the M. fuliginosus and M. magnater sampled from China and one site in Vietnam. Mitochondrial DNA gene genealogies revealed two monophyletic lineages throughout the Tropic of Cancer. According to DNA bar code divergences, one is M. fuliginosus corresponding to the Chinese mainland and the other is M. magnater corresponding to tropical regions including Hainan and Guangdong provinces of China and Vietnam. Their most recent common ancestor was dated to the early stage of the Quaternary glacial period (ca. 2.26 million years ago [Ma] on the basis of D-loop data, and ca. 1.69-2.37 Ma according to ND2). A population expansion event was inferred for populations of M. fuliginosus at 0.14 Ma. The two species probably arose in separate Pleistocene refugia under different climate zones. They significantly differed in forearm length, maxillary third molar width, and greatest length of the skull.

19.
PLoS One ; 8(8): e70368, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23950926

RESUMEN

Patterns of intraspecific geographic variation of signaling systems provide insight into the microevolutionary processes driving phenotypic divergence. The acoustic calls of bats are sensitive to diverse evolutionary forces, but processes that shape call variation are largely unexplored. In China, Rhinolophus ferrumequinum displays a diverse call frequency and inhabits a heterogeneous landscape, presenting an excellent opportunity for this kind of research. We quantified geographic variation in resting frequency (RF) of echolocation calls, estimated genetic structure and phylogeny of R. ferrumequinum populations, and combined this with climatic factors to test three hypotheses to explain acoustic variation: genetic drift, cultural drift, and local adaptation. Our results demonstrated significant regional divergence in frequency and phylogeny among the bat populations in China's northeast (NE), central-east (CE) and southwest (SW) regions. The CE region had higher frequencies than the NE and SW regions. Drivers of RF divergence were estimated in the entire range and just the CE/NE region (since these two regions form a clade). In both cases, RF divergence was not correlated with mtDNA or nDNA genetic distance, but was significantly correlated with geographic distance and mean annual temperature, indicating cultural drift and ecological selection pressures are likely important in shaping RF divergence among different regions in China.


Asunto(s)
Evolución Biológica , Quirópteros/fisiología , Ecolocación , Ecosistema , Animales , China , Quirópteros/genética , Clima , Femenino , Flujo Genético , Masculino , Filogenia , Vocalización Animal
20.
Zoology (Jena) ; 114(2): 69-77, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21435853

RESUMEN

Postnatal changes in flight development, wing shape and wing bone lengths of 56 marked neonate Hipposideros pomona were investigated under natural conditions in southwest China. Flight experiments showed that pups began to flutter with a short horizontal displacement at 10 days and first took flight at 19 days, with most achieving sustained flight at 1 month old. Analysis of covariance on wingspan, wing area, and the other seven wing characteristics between 'pre-flight' and 'post-volancy' periods supports the hypothesis that growth had one 'pre-flight' trajectory and a different 'post-volancy' trajectory in bats. Wingspan, handwing length and area, armwing length and area, and total wing area increased linearly until the age of first flight, after which the growth rates decreased (all P < 0.001). Wing loading declined linearly until day 19 before ultimately decreasing to adult levels (P < 0.001). Additionally, the relationship of different pairwise combinations of bony components composing span-wise length and chord-wise length was evaluated to test the hypothesis that compensatory growth of wing bones in H. pomona occurred in both 'pre-flight' and 'post-volancy' periods. The frequency of short-long and long-short pairs was significantly greater than that of short-short, long-long pairs in most pairs of bone elements in adults. The results indicate that a bone 'shorter than expected' would be compensated by a bone or bones 'longer than expected', suggesting compensatory growth in H. pomona. The pairwise comparisons conducted in adults were also performed in young bats during 'pre-flight' and 'post-volancy' periods, demonstrating that compensatory growth occurred throughout postnatal ontogeny.


Asunto(s)
Huesos/anatomía & histología , Quirópteros/anatomía & histología , Quirópteros/crecimiento & desarrollo , Alas de Animales/anatomía & histología , Alas de Animales/crecimiento & desarrollo , Animales , Desarrollo Óseo , China , Quirópteros/fisiología , Femenino , Vuelo Animal , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...